Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.12.20151068

ABSTRACT

Clinical manifestations of COVID-19 caused by the novel coronavirus SARS-CoV-2 are associated with age. While children are largely spared from severe respiratory disease, they can present with a SARS-CoV-2-associated multisystem inflammatory syndrome (MIS-C) similar to Kawasaki's disease. Here, we show distinct antibody (Ab) responses in children with MIS-C compared to adults with severe COVID-19 causing acute respiratory distress syndrome (ARDS), and those who recovered from mild disease. There was a reduced breadth and specificity of anti-SARS-CoV-2-specific antibodies in MIS-C patients compared to the COVID patient groups; MIS-C predominantly generated IgG Abs specific for the Spike (S) protein but not for the nucleocapsid (N) protein, while both COVID-19 cohorts had anti-S IgG, IgM and IgA Abs, as well as anti-N IgG Abs. Moreover, MIS-C patients had reduced neutralizing activity compared to COVID-19 cohorts, indicating a reduced protective serological response. These results suggest a distinct infection course and immune response in children and adults who develop severe disease, with implications for optimizing treatments based on symptom and age.


Subject(s)
Cryopyrin-Associated Periodic Syndromes , Respiratory Tract Diseases , Respiratory Distress Syndrome , Mucocutaneous Lymph Node Syndrome , Hepatitis C, Chronic , COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.29.20142703

ABSTRACT

The SARS-CoV-2 beta coronavirus is the etiological driver of COVID-19 disease, which is primarily characterized by shortness of breath, persistent dry cough, and fever. Because they transport oxygen, red blood cells (RBCs) may play a role in the severity of hypoxemia in COVID-19 patients. The present study combines state-of-the-art metabolomics, proteomics, and lipidomics approaches to investigate the impact of COVID-19 on RBCs from 23 healthy subjects and 29 molecularly-diagnosed COVID-19 patients. RBCs from COVID-19 patients had increased levels of glycolytic intermediates, accompanied by oxidation and fragmentation of ankyrin, spectrin beta, and the N-terminal cytosolic domain of band 3 (AE1). Significantly altered lipid metabolism was also observed, especially short and medium chain saturated fatty acids, acyl-carnitines, and sphingolipids. Nonetheless, there were no alterations of clinical hematological parameters, such as RBC count, hematocrit, and mean corpuscular hemoglobin concentration, with only minor increases in mean corpuscular volume. Taken together, these results suggest a significant impact of SARS-CoV-2 infection on RBC structural membrane homeostasis at the protein and lipid levels. Increases in RBC glycolytic metabolites are consistent with a theoretically improved capacity of hemoglobin to off-load oxygen as a function of allosteric modulation by high-energy phosphate compounds, perhaps to counteract COVID-19-induced hypoxia. Conversely, because the N-terminus of AE1 stabilizes deoxyhemoglobin and finely tunes oxygen off-loading, RBCs from COVID-19 patients may be incapable of responding to environmental variations in hemoglobin oxygen saturation when traveling from the lungs to peripheral capillaries and, as such, may have a compromised capacity to transport and deliver oxygen. Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=141 SRC="FIGDIR/small/20142703v1_ufig1.gif" ALT="Figure 1"> View larger version (46K): org.highwire.dtl.DTLVardef@16db0d2org.highwire.dtl.DTLVardef@73b808org.highwire.dtl.DTLVardef@1374ee5org.highwire.dtl.DTLVardef@1cbbc8_HPS_FORMAT_FIGEXP M_FIG C_FIG Key PointsO_LICOVID-19 promotes oxidation and fragmentation of membrane proteins, including the N-term of band 3 C_LIO_LIRBCs from COVID-19 patients are characterized by increases in glycolysis and altered lipidomes C_LIO_LICOVID-19 impacts two critical mechanisms that finely tune red cell membranes and hemoglobin oxygen affinity C_LI


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.29.20116889

ABSTRACT

Over 5 million people around the world have tested positive for the beta coronavirus SARS-CoV-2 as of May 29, 2020, a third of which in the United States alone. These infections are associated with the development of a disease known as COVID-19, which is characterized by several symptoms, including persistent dry cough, shortness of breath, chills, muscle pain, headache, loss of taste or smell, and gastrointestinal distress. COVID-19 has been characterized by elevated mortality (over 100 thousand people have already died in the US alone), mostly due to thromboinflammatory complications that impair lung perfusion and systemic oxygenation in the most severe cases. While the levels of pro-inflammatory cytokines such as interleukin-6 (IL-6) have been associated with the severity of the disease, little is known about the impact of IL-6 levels on the proteome of COVID-19 patients. The present study provides the first proteomics analysis of sera from COVID-19 patients, stratified by circulating levels of IL-6, and correlated to markers of inflammation and renal function. As a function of IL-6 levels, we identified significant dysregulation in serum levels of various coagulation factors, accompanied by increased levels of anti-fibrinolytic components, including several serine protease inhibitors (SERPINs). These were accompanied by up-regulation of the complement cascade and antimicrobial enzymes, especially in subjects with the highest levels of IL-6, which is consistent with an exacerbation of the acute phase response in these subjects. Although our results are observational, they highlight a clear increase in the levels of inhibitory components of the fibrinolytic cascade in severe COVID-19 disease, providing potential clues related to the etiology of coagulopathic complications in COVID-19 and paving the way for potential therapeutic interventions, such as the use of pro-fibrinolytic agents.


Subject(s)
Headache , Dyspnea , Vascular Diseases , Cough , Taste Disorders , Fetal Distress , Chronobiology Disorders , Blood Coagulation Disorders, Inherited , Myalgia , COVID-19 , Inflammation
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.14.20102491

ABSTRACT

Previous studies suggest a role for systemic reprogramming of host metabolism during viral pathogenesis to fuel rapidly expanding viral proliferation, for example by providing free amino acids and fatty acids as building blocks. In addition, general alterations in metabolism can provide key understanding of pathogenesis. However, little is known about the specific metabolic effects of SARS-COV-2 infection. The present study evaluated the serum metabolism of COVID-19 patients (n=33), identified by a positive nucleic acid test of a nasopharyngeal swab, as compared to COVID-19-negative control patients (n=16). Targeted and untargeted metabolomics analyses specifically identified alterations in the metabolism of tryptophan into the kynurenine pathway, which is well-known to be involved in regulating inflammation and immunity. Indeed, the observed changes in tryptophan metabolism correlated with serum interleukin-6 (IL-6) levels. Metabolomics analysis also confirmed widespread dysregulation of nitrogen metabolism in infected patients, with decreased circulating levels of most amino acids, except for tryptophan metabolites in the kynurenine pathway, and increased markers of oxidant stress (e.g., methionine sulfoxide, cystine), proteolysis, and kidney dysfunction (e.g., creatine, creatinine, polyamines). Increased circulating levels of glucose and free fatty acids were also observed, consistent with altered carbon homeostasis in COVID-19 patients. Metabolite levels in these pathways correlated with clinical laboratory markers of inflammation and disease severity (i.e., IL-6 and C-reactive protein) and renal function (i.e., blood urea nitrogen). In conclusion, this initial observational study of the metabolic consequences of COVID-19 infection in a clinical cohort identified amino acid metabolism (especially kynurenine and cysteine/taurine) and fatty acid metabolism as correlates of COVID-19, providing mechanistic insights, potential markers of clinical severity, and potential therapeutic targets.


Subject(s)
Infections , Kidney Diseases , COVID-19 , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL